Recurrence relations for symplectic realization of (quasi)-Poisson structures
نویسندگان
چکیده
منابع مشابه
Symplectic Structures Associated to Lie-poisson Groups
The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups. On leave of absence from LOMI, Fontanka 27, St.Petersburg, ...
متن کاملQuasi-Poisson structures as Dirac structures
We show that quasi-Poisson structures can be identified with Dirac structures in suitable Courant algebroids. This provides a geometric way to construct Lie algebroids associated with quasi-Poisson spaces.
متن کاملNonlinearizability of certain Poisson structures near a symplectic leaf
We give an intrinsic proof that Vorobjev’s first approximation of a Poisson manifold near a symplectic leaf is a Poisson manifold. We also show that Conn’s linearization results cannot be extended in Vorobjev’s setting.
متن کاملTriangular Poisson Structures on Lie Groups and Symplectic Reduction
We show that each triangular Poisson Lie group can be decomposed into Poisson submanifolds each of which is a quotient of a symplectic manifold. The Marsden–Weinstein–Meyer symplectic reduction technique is then used to give a complete description of the symplectic foliation of all triangular Poisson structures on Lie groups. The results are illustrated in detail for the generalized Jordanian P...
متن کاملCodimension one symplectic foliations and regular Poisson structures
In this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2019
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/ab10e8